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Exploiting the capabilities of smartphones for monitoring social anxiety shows promise for advancing our ability to both
identify indicators of and treat social anxiety in natural settings. Smart devices allow researchers to collect passive data
unobtrusively through built-in sensors and active data using subjective, self-report measures with Ecological Momentary
Assessment (EMA) studies. Prior work has established the potential to predict subjective measures from passive data. However,
the majority of the past work on social anxiety has focused on a limited subset of self-reported measures. Furthermore, the
data collected in real-world studies often results in numerous missing values in one or more data streams, which ultimately
reduces the usable data for analysis and limits the potential of machine learning algorithms. We explore several approaches for
addressing these problems in a smartphone based monitoring and intervention study of eighty socially anxious participants
over a five week period. Our work complements and extends prior work in two directions: (i) we show the predictability of
seven different self-reported dimensions of social anxiety, and (ii) we explore four imputation methods to handle missing
data and evaluate their effectiveness in the prediction of subjective measures from the passive data. Our evaluation shows
imputation of missing data reduces prediction error by as much as 22%. We discuss the implications of these results for future
research.
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1 INTRODUCTION
Social anxiety disorder (SAD) affects approximately 15 million American adults at any given time [1], around 7%
of the adult population in the U.S. [37]. SAD is characterized by intense fear and avoidance of socially evaluative
situations, and is associated with both academic challenges and negative developmental trajectories [40, 71, 74].
Currently, clinically validated methods for SAD detection heavily depend upon retrospective self-reports and
questionnaires conducted in a laboratory setting. These approaches require patients to be motivated to seek out
assessment opportunities and the approach is prone to recall bias. Further, the approach typically only provides a
single snapshot of the behavior of interest, rather than permitting dynamic tracking and numerous samples of
behavior. It is thus important to investigate alternative approaches to identify, monitor, and treat social anxiety.

The ubiquity of mobile technology affords promising opportunities to unobtrusively monitor SAD symptoms.
For example, using mobile health (mHealth) technology has enabled researchers and clinicians to observe the
manifestation of SAD in natural settings, rather than only in clinical or lab-based settings [24, 33]. Apart from
passive data, mHealth technologies can be used to understand real-time, naturalistic experiences via Ecological
Momentary Assessment (EMA) [68]. As an important step towards understanding real-time experiences of social
anxiety in a diagnosed sample, we use data from a sample with elevated symptoms of social anxiety to test
relationships between passive and self-reported social anxiety measures via smartphone technologies. Specifically,
our first research question aims to address whether passive data be used to predict daily self-reported experiences
related to social anxiety (e.g., negative affect and avoidance of social situations)?
Using smartphone technology, we can capture fine-grained measures related to human behavior, allowing

researchers to passively monitor behavioral markers that correlate with individuals’ mental health state, reducing
the burden of repeated subjective measures. However, in practice, we rarely get continuous uninterrupted data
from mobile devices due to a variety of factors (e.g., user switches off some data streams, some data streams are
not collected in the background, diverse hardware-contingent policies). As a result, mobile sensor data often
suffers from “missingness”, thus reducing the effectiveness of many popular machine learning algorithms that
researchers would otherwise like to apply to those sparse data. Thus, our second research question concerns how
can we leverage data to predict self-reported experiences of social anxiety despite of missingness?
In this paper, we address our research questions by demonstrating the performance of machine learning

algorithms in predicting self-reported measures from the passive data using diverse imputation methods. Our
specific research questions are as follows:
RQ1: Can passive data be leveraged to predict daily self-reported experiences related to social anxiety (e.g.,
negative affect and avoidance of social situations)?
RQ2: How can we leverage data to predict self-reported experiences of social anxiety despite missingness?

First, we will provide important framing for the problem of predicting subjective EMA measures using passive
behavioral measures. Then, we will outline common imputation approaches used across mobile sensing and
other fields and evaluating models on both imputed and non-imputed data to assess the performance when using
specific methods. Finally, we will discuss the implications of predicting subjective measures of social anxiety by
using the passively sensed data. We will evaluate our work using data on 80 socially anxious participants using
both passive data and subjective measures across a five-week period.

2 RELATED WORK

2.1 Mobile Sensing for Mental Health: From Biomarkers to Behaviors
Mobile sensing has become a promising avenue for collecting real-time, objective assessments in the context of
mental health due to the cost efficiency and increasing ubiquity of smart devices (e.g. smartphones, wearables)
[30, 39, 48]. Embedded sensors in technologies like smartphones and wearable devices can be harnessed to
passively capture information related to users’ personal and environmental factors (e.g., current location as
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indicated by GPS) and behaviors (e.g., movements as indicated by accelerometer metrics) [10], reducing the burden
of self-report measures on participants. Studies have shown that behavioral data captured with mobile sensing
techniques are associated with psychiatric symptoms among individuals with mental illness and behavioral
disorders [48], including depression [2, 3, 15, 17, 19, 20, 55, 57, 60, 65, 79, 81], schizophrenia [9, 76], bipolar
disorder [7, 21], and post-traumatic stress disorder [55, 57].
The majority of existing work on mobile sensing for anxiety has focused on predicting clinically validated

measures for assessing levels of anxiety at a single time point (e.g., assessing anxiety reported on one occasion
on a trait questionnaire)[12–14, 19, 20, 26, 47]. However, these measures are limited because they are collected
infrequently (usually only once) and do not reveal temporal variations in individuals’ experience of anxiety
symptoms. These retrospective trait measures are also subject to recall bias [23, 68], social desirability bias [23, 75],
and limited self-knowledge [52]. EMAhas emerged as a popularmethod for conducting in-situ experience sampling
to monitor and understand mental health status in real time in the real world. Existing work on mobile sensing
towards predicting momentary mental health states has shown promising results in the context of mood instability
[50, 61], depressive moods [17, 46, 79], general mood [4, 34], and affect [77, 82]. By prompting individuals to
assess disorder-relevant behaviors in daily life, EMA allows researchers to collect a more complete depiction
of an individual’s symptom changes throughout their lived experience, compared to relying on retrospective
questionnaires alone. Further, EMA allows us to collect information on multiple aspects of a person’s subjective
experience of anxiety, painting a more complete, personalized picture of an individual’s experience. For example,
one socially anxious person might be willing to enter into social experiences but not enjoy them when they
do, whereas another socially anxious person might avoid social experiences altogether. As such, assessing and
predicting multiple subjective facets of social anxiety, both within and across individuals, holds great promise for
researchers and clinicians hoping to better understand and treat SAD [22, 35, 49].
Although EMA affords several advantages for collecting in-situ data, it also introduces a number of disad-

vantages [67]. Due to the frequent nature of EMA prompts, participants are likely to experience high levels of
response burden [72]. This poses a trade-off between the level of granularity of collected data and the amount of
data burden placed on participants. EMA-based studies are further limited by participants’ low compliance rates
in response to potentially overwhelming data burden. Heron et al. conducted a survey of EMA-based studies
and found that the survey completion rate was only 76% [32]. Even when response rates are good, this does not
imply that the collected responses are of good quality [18]. Thus, there is a need to capitalize on the benefits of
EMA and passive data collection while exploring new methods to reduce the disadvantages.

2.2 Imputation Methods for Passive Sensing Applications
While mobile sensors are a promising technology for continuous behavior assessment, these devices might not
function as expected in the presence of many unpredictable factors, including: (1) participants turning off sensors
due to excessive battery drainage or privacy concerns; (2) participants forgetting to charge or wear sensors; (3)
sensors breaking or the signals becoming noisy; and (4) mobile phone connectivity, hardware sensor functionality,
and mobile software updates, which can interfere with data integrity [64]. The resulting incomplete values have
to be processed and approximated in order for further data processing to be more reliable and valid.
In the context of mental health applications, researchers have used a variety of approaches to deal with

incomplete data. Wang et al. used a time-based threshold to mitigate the effects of missing data on resulting time
series features [78]. Chow et al. attributed missing data to users turning off their phone or shutting down the app
and used the last observation carried forward method to impute missing observations [20]. Sano et al. used an
automated classifier to separate clean and noisy data epochs for further analysis. [64]. However, few studies have
assessed the impact of their chosen imputation method on the resulting findings and model performance.
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Researchers across diverse fields have explored measures to mitigate the effects of missing mobile sensor
data. Past work can largely be categorized as Matrix Completion-based, interpolation-based, or regression-based
methods [83]. Matrix Completion-based methods attempt to derive a low-PCA matrix from a small number
of samples [16, 36, 73]. In general, these methods operate by under-sampling high-dimensional signals and
accurately reconstructing them by exploiting hidden structures in the underlying data. Mazmuder et al. proposed
a Matrix Completion-based method that leverages convex relaxation techniques to solve large-scale Matrix
Completion problems [44]. This simple and efficient algorithm uses an iterative approach to replace missing
entries in the data with those obtained from a soft-thresholded singular vector decomposition. By using the
nuclear norm as a regularizer, the algorithm minimizes the matrix reconstruction error subject to a bound on the
nuclear norm.

Alternatively, interpolation-based methods aim to find a smooth way to fill missing data points between values.
Instead of removing rows and columns containing missing values, interpolation-based methods retain all the
information in the original dataset, and replace missing values with a designated placeholder value (e.g., “0”s
or the mean of other values). Reza et al. proposed an interpolation-based imputation algorithm which searches
the sequential dataset to find data segments that have a prior and posterior segment that matches those of the
missing data to use as a substitute [58]. Finally, regression-based methods are designed to predict observed
values of a target variable based on other variables available in the dataset. The fitted regression model is then
used to impute values in cases where the value of the target variable is missing. Specifically in the context of
mobile sensing data, many researchers have leveraged regression models for imputation for hierarchical data [42],
participatory sensing data [38], and mixed-attribute data (i.e., both continuous and discrete data streams) [84].

Researchers have also explored multiple-step imputation based methods [69, 70], first imputing missing values
multiple times (m times) to generatem datasets, and then averaging the imputed values at the same data point of
all generated datasets to get a final integrated value. Multiple Imputations by Chained Equations (MICE) [6] is a
well known statistical method that has previously been used in activity recognition [54] and clinical research
applications [59]. MICE is a particularly promising imputation method in the context of mobile sensing due to its
ability to handle diverse variable types (e.g., continuous, binary, categorical) due to the independence of variable
imputation models [80]. MICE has also been shown to scale well to larger datasets, with hundreds and thousands
of observations [27, 66].
In this paper, we evaluate imputation methods from each of the mentioned categories (Matrix Completion-

based, interpolation-based, or regression-based) on a dataset collected during a five-week study monitoring a
high social anxiety sample. We compare a variety of modeling approaches using both imputed and non-imputed
versions of the same dataset to examine the impact of these methods on our ability to predict time-variable
measures of mental health.

Table 1. Demographic information

(a) Gender identity reported by sam-
ple

Gender #

Male 20
Female 60

(b) Race reported by sample

Race #

Caucasian 61
Asian 14
African American 5

(c) Status distribution

Status #

Undergraduate students 62
Graduate students 8
Local community 10
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Fig. 1. SIAS score histogram for all participants. Bin
width is set to 5

Fig. 2. Distribution of # of days of data submit-
ted by participants. Bin width is 5.

3 STUDY DESIGN
We conducted a five-week study at the University of Virginia with 114 participants. The study was approved
by the university institutional review board. Participant eligibility was based on scoring above 29 on the Social
Interaction Anxiety Scale (SIAS) [43], indicating moderate to severe social anxiety symptoms (higher SIAS scores
indicate greater symptom severity).
34 out of the 114 total participants were dropped from the current analysis due to low compliance with the

subjective measure surveys (i.e. less than 50% of expected responses; 17 days minimum threshold). Table 1 shows
the demographic information and Figure 1 shows the distribution of SIAS scores for the remaining N = 80
participants (Maдe = 20.51, SDaдe = 3.18). Figure 2 shows the distribution of the number of days of data submitted
by these 80 participants.

Participants received either $25 or 1.5 credit hours for participating in a baseline (in-lab) session (as part of the
larger study). The payment for the five-week EMA monitoring period was calculated based on the percentage of
available surveys that were completed, for a maximum of $70. In the baseline session, participants completed
various trait inventories, including measures of interpretation bias, cognitive reappraisal tendencies, and social
anxiety symptoms. Additionally, a third-party mobile application, MetricWire1, was installed on the personal
smartphones of participants.

4 DATA

4.1 Passive Data
TheMetricWire smartphone application passively recorded the following four data streams: (1) GPS; (2) Pedometer;
(3) Accelerometer; (4) Activity; (5) Call; (6) Text. Activity states (e.g., Stationary, Walking, Running, Automotive,
Cycling) were computed using a built-in classifier in MetricWire on collected raw sensor data. Accelerometer data
were collected at a sampling frequency of 1 Hz, whereas GPS and Pedometer data collection was event-driven (i.e.,
new data samples were collected only if a change in the location was detected). Phone call and Text data were
downloaded at the end of the 5-week study from the participants’ smartphones using the iMazing2 application.

To effectively characterize participants’ daily behaviors in terms of these passive data streams, we calculated
a large number of features at day level as shown in Table 2. For pedometer, MetricWire collected start/end
timestamps, number of steps taken, distance covered, pace (in seconds per meter), cadence (in steps per second).
Using this information we computed other statistical (average, min, max, std) features. For accelerometer,
1https://metricwire.com/
2https://imazing.com/
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Table 2. Passive data streams and computed features at day level. Features labelled with superscript * were dropped during
modeling as they were collinear with the remaining features of data streams.

Data stream Features

Pedometer Steps (total, avg, min*, max*, std*), Pace (avg, std, min*, max*), Cadence (avg, std, min*,
max*), Activeminutes (total, avg*, min*, max*, std*), distance (total*, avg*, min*, max*,
std*)

Accelerometer Magnitude (average, min, kurtosis, max*, std*, median*, skew*, energy*), Signal
Magnitude Area* (SMA), Signal Vector Magnitude* (SVM)

GPS Number of places visited, entropy, proportion of day time spent at home, proportion
of day time spent at other places

Activity Stationary proportion, walking proportion, running proportion, automotive propor-
tion, cycling proportion, number of records

Call Count of incoming/outgoing calls, average duration of incoming/outgoing calls, num-
ber of unique contacts contacted

Text Count of incoming/outgoing calls, number of unique contacts texted

MetricWire collected timestamps, X, Y, and Z coordinates. With X, Y, and Z, we computed Magnitude, Signal
Magnitude Area (SMA), Signal Vector Magnitude (SVM) and other statistical (average, min, kurtosis, max, std,
median, skew, energy) features. Signal Magnitude, SMA, and SVM were computed as

Maдnitude =
√
X 2 + Y 2 + Z 2

SMA = |X | + |Y | + |Z |

SVM = X 2 + Y 2 + Z 2

For GPS, MetricWire provided timestamps and location coordinates (latitude, longitude). We then computed
location based features such as location entropy and cummulative staying time in locations using the methodology
outlined in [12]. For activity types, MetricWire outputted whether a participant was stationary, walking, cycling,
running, or driving at a particular time instant. Using this information, we computed the proportion of day time
a participant was doing either of these mentioned activities. All computed features are of continuous type.

Given the breadth of our feature space, multicollinearity posed a significant problem. Thus, we removed highly
correlated features within each data stream a priori, using Pearson Correlation coefficients to identify highly
correlated features. For modeling, we selected only those features that had a correlation coefficient in the range
of −0.75 to 0.75. While existing works have supported our choice of correlation threshold [45, 53], we ultimately
set the threshold of ±0.75 empirically in order to balance the retention of redundant features with our goal
of condensing the final feature space used in the predictive modeling step. Within each data stream, collinear
features which were dropped during the modeling are shown in blue color in Table 2.

4.2 Subjective Measures
Social anxiety disorder is characterized by increased state social anxiety in daily life, but state social anxiety is
not necessarily uniformly elevated throughout the day – it is particularly heightened in certain situations more
than others (i.e., socially evaluative situations, such as speaking up in a group or asking a person on a date; [5]).
Times of elevated state social anxiety are likely good times for intervention. Thus, we aimed to identify times of
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Table 3. Daily subjective measures and corresponding questions collected through EMAs at 10 PM everyday.

Subjective Measure Question Response (on a scale of 0 to 10)

Social Effectiveness I felt that I interacted with others today Not effectively (0) . . .Very effectively (10)
Social Enjoyment I my social interactions today Really disliked (0) . . . Really enjoyed (10)
Social Acceptance During my social interactions today, I felt Very rejected (0) . . .Very accepted (10)
Social Avoidance I avoided my social interactions today Not at all (0) . . .Very much (10)
Evaluation Concern I was with what people might think of me. Very worried (0) . . .Very comfortable (10)
Negative Affect Throughout my whole day, I felt Very negative (0) . . .Very positive (10)
Anxiety Throughout my whole day, I felt Very calm (0) . . .Very anxious (10)

elevated state, rather than trait social anxiety towards capturing a better temporal resolution for understanding
social anxiety, and holds promise as a step towards just-in-time adaptive interventions (JITAIs).
The Metricwire app was programmed to deliver EMAs daily and collect subjective measures of partici-

pants’ experiences. Subjective measures were collected using three-minute surveys, which were delivered at
the end of every day at 10 PM. These surveys remained active for two hours and then closed automatically
at midnight if left unanswered. We gathered seven subjective measures related to perceived social effective-
ness, social enjoyment, perceived social acceptance, social avoidance, concern about evaluation, negative affect,
and anxiety. The question phrasing and response scales corresponding to each of these subjective measures
are shown in Table 3. We will refer to the subjective measures by the identifiers listed in the ‘Subjective
Measure’ column of Table 3. The response for each question was presented on a sliding scale of 0 to 10.

Fig. 3. Correlation plot of subjective measures. The color and size of the
circles reflect the magnitude of the correlation coefficient and starred cells
denote statistically significant values (i.e. p-value < 0.05).

While the current focus on end of day
reports (vs. reports throughout the day)
means we do not have fine-grained reso-
lution for predicting the right time for an
intervention in the specific moment of dis-
tress, this evaluation shows the feasibility
of the approach and would allow for predic-
tion at the daily level. Notably, some inter-
ventions might occur at a daily level, such
as planned completion of thought records
to reappraise thoughts about fears of neg-
ative evaluation.

The Pearson correlation plot for all sub-
jective measures is shown in Figure 3. The
plot shows that most of the subjective mea-
sures are not significantly correlated with
each other. This implies that it is impor-
tant to analyze these subjective measures
separately.
We also aimed to understand the vari-

ance of responses to each of the subjective
measures across different study days and
across the participants. Figure 4 shows the
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Fig. 4. Boxplots showing the variation in responses to Negative affect subjective measure over the course of the study for
different participants.

Fig. 5. (a) Distribution of participants’ responses to different subjective measures. Anxiety (M = 4.69, SD = 2.35), Evaluation-
Concern (M = 6.19, SD = 2.45), NegativeAffect (M = 6.25, SD = 2.20), SocialAcceptance (M = 6.85, SD = 2.10), SocialAvoidance
(M = 4.18, SD = 2.52), SocialEffectiveness (M = 6.60, SD = 2.25), SocialEnjoyment (M = 6.60, SD = 2.24). (b) Histogram showing
the frequency of standard deviation in daily subjective responses for all 80 participants. Bin width is set to 0.5.

variability in daily responses to the “Negative Affect” measure for each of the 80 participants. Notably, there is
considerable deviation in responses within most participants, i.e., most participants respond to the same subjective
measure differently on different days, pointing to the measure’s sensitivity to dynamic changes. Furthermore, the
boxplots vary in their median values, signifying that participants responded differently to the same subjective
measure. Participants’ responses to the remaining six subjective measures exhibited similar variability. The
demonstrated variability in responses to subjective measures makes the task of predicting these measures using
passive data particularly interesting and complex.
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Figure 5(a) shows the distribution of participants’ responses to different subjective measures. And Figure 5(b)
shows the distribution of standard deviations, computed on each of the seven measures for each participant
separately. These histograms show that responses provided to each of the subjective measures differ in terms
of standard deviations. For example, the histogram for the “Anxiety” measure shows that 29 participants had a
standard deviation of 1.5 in their daily responses, meaning they differed by 1.5 from their daily mean response.

4.3 Data Missingness
Our dataset contains data from several mobile sensor data streams (see Table 2 for a complete list). Well-known
prediction based machine learning algorithms (e.g., Random Forest, AdaBoost, Decision Trees, kNN) drop rows
of data that have missing values in one or more of the features, thus reducing the size of the usable dataset.
This potentially drops useful information and reduces the usefulness of the collected datasets to the research
community.
Due to the variation in the amount of missing data across the different passive streams and participants, we

calculated the percentage of missing data for each data stream on the participant level as follows:

Missing data (%) = (1 −
di
N
) ∗ 100

where i ∈ {Accelerometer, GPS, Pedometer, Text, Call, Activity}, di represents the number of days a participant has
submitted the data for the ith data stream, and N represents the total number of days a participant has submitted
daily subjective measures via EMAs. We have chosen to represent data missingness on a daily level due to the
significant variations in sensing frequency (i.e., continuous streams like Accelerometer vs. polling streams like
GPS) as well as inconsistencies in when sensors were enabled or disabled across participants’ devices.
Figure 6 shows the percentage of missing data for all participants in the form of a heat map. Each x-axis tick

mark in the heat map represents a different participant and y-axis tick-mark labels represent a different data
stream. The legend at the top of the figure shows the mapping from percentage of missing data to the chosen
color scale. One approach to improve the usefulness of the dataset is to impute the missing values based on the
observed values in other data streams. In the following section, we describe several imputation methods and our
adaptation of these methods to our mobile sensor data.

5 METHODS
In the previous sections, we have presented our target dataset and rationale for examining various data imputation
methods in this problem space. In this section, we describe different data imputation methods and the predictive

Fig. 6. Heat map showing missing data percentage in each of the six data streams for all 80 participants. Each dot in the x
axis represents a participant. [Best viewed in colour.]
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modeling approaches we will use to predict the subjective measures. Further, we describe our process for
evaluating the performance of these models.

5.1 Data Imputation Algorithms
An important consideration in applying imputation methods to our dataset is to check the assumption that the
missing data is missing completely at random (MCAR). To confirm that our dataset satisfied this assumption,
we ran Little’s MCAR test [8, 41]. Because we obtained a p-value of 0.44, we concluded that the missing data is
indeed MCAR and that the imputation methods are viable for our dataset. We used following four imputation
methods, each of these is from a different category of imputation methods as discussed in the RelatedWork section.

Multiple Imputations by Chained Equations (MICE) [6]: This method imputes the missing values multiple
times instead of using a single value such as mean, mode, or last observation carried forward. This results in less
biased missing values. MICE consists of the following four steps:
(i) Input data: Take the dataset with missing values as input.
(ii) Impute data: Create several copies of the input dataset and then replace missing values in each copy with

regression. Running regression on each copy of the dataset with different observations results in different
regression coefficients and hence results in different imputed values [6].

(iii) Analyze results: Run a single statistical analysis method on all the copies of imputed datasets and assess
the results using several statistical measures (e.g., standard deviation). This step determines which of the
imputed copies will be used in the next step.

(iv) Pool results: Aggregate selected copies of imputed datasets by computing the mean, and then output a final
imputed copy of the dataset.

Matrix Completion: Suppose M represents a matrix of all features with some values missing. The Matrix
Completion approach finds a solution matrix, X , by solving the following equation

minimize | |M − X | |2F + λ | |X | |∗

where | |.| |F is the Frobenius norm, calculated on the non-missing entries of M , and | |X | |∗ is the nuclear norm
(sum of singular values) of X . Please refer to [44] for the details of the method.

K-nearest Neighbor (KNN): In this method, the missing values are imputed by taking the weighted average of
k-nearest neighbors. The nearest neighbors are chosen based on some distance measure. So, this method requires
the selection of a distance metric and value of k.

Last Observation Carried Forward (LOCF): This method is commonly used for imputing longitudinal re-
peated measures data. It replaces missing values by the recent last known values.

5.2 Predictive Modeling
Existing approaches to predicting subjective responses from passive data features have framed the task as either
a classification or regression problem [11, 34, 63]. While classification based approaches result in coarse-grained
output values and do not show the variability at a detailed level, regression based approaches result in more
fine-grained output values, along the same scale as collected subjective measures. We evaluated seven (linear
regression, DecisionTree, XGBoost, LightGBM, Random Forest, MERF, and CatBoost) different prediction methods.
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But, in this paper we present only those methods (Random Forest, MERF, and CatBoost) which resulted in lower
prediction error. These methods were able to capture the non-linearity in the dataset.

Random Forest (RF): RF is a “bagging” ensemble based machine learning method. It creates various subsets of
the input data chosen randomly with replacement. On each subset, decision trees are trained separately first and
then the final prediction value is taken as an average of the outputs of all the decision trees.

CatBoost: Catboost [56] is a “boosting” ensemble-based machine learning method. It also uses decision trees
as in the case of Random Forests, but the decision trees are arranged sequentially; i.e., results of previous deci-
sion tree are fed to the next one so as to produce the final predicted value. It is specially used for the categorical data.

Mixed Effects Random Forests (MERF): MERF [28] falls in the category of linear mixed effect models, i.e.,
models having two components, a fixed or population-averaged and a random or cluster specific component. Such
models are suitable for modeling data that are divided into various clusters. For example, our dataset contains
data from 80 participants, which represents 80 clusters. The underlying assumption in these models is that
observations belonging to the same cluster are more similar to each other than the observations found in other
clusters. So, the features which differentiate clusters should be modeled separately from the rest of the features.
The former ones are called random effects and the latter ones are called fixed effect features. MERF extends the
RF to operate on clustered data. It is defined as follows:

yi = f (Xi ) + Zibi + ϵi ,

bi ∼ N (0, P), ϵi ∼ N (O,Qi ), i = 1, . . .n

where yi represents a vector of responses for ni observations in cluster i , Xi and Zi represent matrices of fixed-
effects and random-effects covariates, bi represents unknown vector of random effects for cluster i , ϵi is the
vector of errors, f (Xi ) represents an unknown non-linear function and is estimated using Random Forests. P and
Q represent covariance matrices of bi and Qi respectively.

Baseline: We used a baseline mean method as a benchmark for comparing the performance of the above three
methods. In this method, the output is predicted as the mean of previous observed response values. For example, if
the training data has subjective measures values for any response as 5, 6, 5, 5, 7, then during testing the predicted
value will be 5.6 (= 5+6+5+5+7

5 )

5.3 Evaluation
To evaluate the performance of our chosen predictive models, we used 5-fold cross-validation to ensure the
consistency and robustness of our results. We used 80% of data for training and the remaining 20% for testing in
each fold while ensuring that 80% of each of the participant’s observations went into training and the remaining
20% of their data was alloted for testing. Parameters shown in Table 4 for each of the prediction methods
(except Baseline) were set using the GridSearchCV method from the scikit-learn Python library [51]. All data
imputation methods were run with default parameter settings, except KNN, in which k was set to 3 with the
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Table 4. Parameters set in different prediction methods after using Grid search technique.

Method Parameters

CatBoost depth = 7, iterations = 400, l2_leaf_reg = 4, learning_rate = 0.1
MERF n_estimators = 200, max_iterations = 50
RF n_estimators = 10, random_state = 0, min_samples_split = 2

ALGORITHM 1: Steps in imputing missing data
Input: A dataset D[P, F ] with missing values as shown in Figure 6, where P ∈ {P1, . . . , P80} represent

participants ids, F ∈ {F1, . . . , FN } represents different passive features
Output: Imputed dataset, D̂[P, F ] with no missing values

1 D̂[P, F ] ← [ ] /* Empty matrix for storing imputed data */

2 for i ← 1 to sizeof( P ) do /* for each participant */
3 Si ← subset D with the data of Pi
4 N ← [nrows(Si ), 1] /* Empty matrix for storing Null features of Si */

5 for j ← 1 to sizeof( F ) do /* for each feature */
6 if ( Si [j] == Null) then /* all values of the feature are NULL */
7 Remove Si [j] from Si and add to N

8 Ŝi ← Apply imputation method to Si
9 Ŝi ← Ŝi ∪ N /* concatenate features column wise */

10 D̂ ← D̂ ∪ Ŝi /* concatenate row wise */

11 if ( D̂ has any Null value ) then
12 D̂ ← Apply imputation method to D̂
13 return D̂

GridSearch technique. We also used the scikit-learn implementation for Random Forest and publicly available
Python implementations for CatBoost3, MERF4, LOCF5, Matrix Completion6, KNN7, and MICE7.
MICE and KNN were run in two steps: (i) The imputation method was applied on each participants’ data

separately. Only those data streams were imputed that had some of the values missing. Data streams with all values
missing were left out; (ii) The imputation method was applied on the whole dataset obtained from the previous
step. This step imputes only left out missing values using the data from all participants. The rationale behind
applying these techniques in two steps was first to leverage the local patterns found within each participant’s
data and, then leverage the global patterns found in the entire dataset. Note that the second step did not impute
the missing values which were imputed in the first step. Algorithm 1 shows the steps followed in implementing
MICE and KNN in detail. The two step methodology was not appropriate for LOCF and Matrix Completion. So, for
each of these methods, each participants’ data was inputted one at a time and later all participants’ imputed data

3https://catboost.ai/
4https://github.com/manifoldai/merf
5https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.fillna.html
6https://web.stanford.edu/~hastie/swData/softImpute/vignette.html
7https://github.com/eltonlaw/impyute
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were collated to create a final imputed dataset. Only Steps 1 - 10 of Algorithm 1 were used in the implementation
of LOCF.

5.3.1 Evaluation metric. We quantified the prediction errors of the predictive models using Root Mean Squared
Error (RMSE):

RMSE =

√∑N
n=1(yn − ŷn)

2

N

where N represents number of days,yn represents actual value of a subjective measure on day n, and ŷn represents
the predicted value of the subjective measure. The lower the value of RMSE, the better is the prediction accuracy.

6 RESULTS
In this section, we first address RQ1 regarding the task of predicting subjective measures of SAD using passive
data collected from smartphones. Specifically, we present the prediction results obtained from the non-imputed
dataset and compare the performance across the different regression models. We then move to RQ2 and present
the corresponding results derived from the imputed dataset and compare both the between-model and overall
performance to our non-imputed results. Finally, we explain the variation of prediction performance of each of
the seven subjective measures in relation to both fluctuations in participants’ reports and SIAS score (i.e., trait
social anxiety).

6.1 Predicting Daily Subjective Measures from Passive Data Features

Fig. 7. RMSE for different prediction methods using non-imputed dataset (i.e., none of the missing values were imputed.)
[Best viewed in color.]

Figure 7 shows the RMSE values for RF, MERF, CatBoost, and a baseline prediction method using the non-
imputed dataset. The lower the RMSE value, the better the prediction accuracy. Each subplot of the figure
corresponds to the prediction results of a different subjective measure. Among the three prediction methods
used, CatBoost performed consistently better than RF, MERF, and Baseline for all seven subjective measures. We
hypothesize that the reasons for this performance improvement are two-fold: i) CatBoost uses all the observations
in the dataset, where as RF and MERF drops observations that have one or more missing values; ii) CatBoost
handles missing values internally; thus, the performance improvement may result from the additional affordances
of this built-in handling approach.

Among the seven subjective measures, “Social Acceptance” and “Social Avoidance” had the lowest and highest
overall RMSE values, respectively. The extreme deviation in RMSE values likely reflects the underlying deviation in
the subjective measure responses as shown in Figure 5(b). Histograms in the figure show that “Social Acceptance”
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had the least number (∼ 16) of participants having ≥ two standard deviations whereas “Social Avoidance” had
the highest number (∼ 45) of participants having ≥ two standard deviations.

6.2 Effect of Imputation on Predictive Model Performance

Fig. 8. RMSE for different prediction methods (CatBoost, MERF, and RF) with Non-imputed and imputed data (obtained
with KNN, LOCF, Matrix Completion, and MICE). [Best viewed in color]

6.2.1 Model Performance on Imputed Datasets. Figure 8 shows the RMSE values for all model predictions made
using four imputed datasets obtained with KNN, LOCF, Matrix Completion, and MICE imputation methods. The
Figure shows: (i) Overall, all three prediction methods (CatBoost, MERF, and RF) for all seven subjective measures
resulted in lower RMSE when using the imputed dataset obtained with the Matrix Completion imputation method.
(ii) For all subjective measures, MERF resulted in lower RMSE compared to RF and CatBoost. This performance
improvement in MERF makes sense in this application due to the completeness of the imputed dataset and MERF’s
suitability for clustering data (given each participant’s data is considered as a separate cluster). By using all the
observations, this approach can detect the clustering nature of the data. Predicting subjective measures while
accounting for the fact that each participant is different resulted in lower prediction error. The performance of
CatBoost improved marginally as compared to its performance on the Non-imputed dataset. Although CatBoost
handled missing values internally in the non-imputed dataset, the performance was still not on par with the
performance obtained using the imputed dataset. This indicates the internal missing data handling approach of
CatBoost was not as robust as applying the Matrix Completion method.
We also aimed to understand whether the results of different machine learning based prediction methods

differ statistically from the baseline method. Thus, we ran Student’s t-test between a pairwise set of the baseline
method results and the different prediction method results. We ensured the applicability of t-test by checking the
normality and variance assumptions by using Shapiro-Wilk8 and Levene9 tests respectively. With t-test, almost
all pairs of results were found to be significantly different as shown in Table 5; thus, we can conclude that all of
the machine learning based prediction methods’ results differed significantly from the baseline results.

6.2.2 Performance Improvement. To understand the differences in model performance between the imputed and
non-imputed dataset, we computed the percentage decrease in prediction error (RMSE) when using the Matrix
Completion imputed dataset for each of the subjective measures. Figure 9 shows that average percentage decrease
in the RMSE values of RF, MERF, and CatBoost across all seven subjective measures are 18.16%, 22.25%, and 3.7%
respectively. The higher RMSE percentage decrease found in RF and MERF when using the imputed dataset can
8https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.shapiro.html
9https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.levene.html
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Table 5. t-value (p-value) computed between the results of the Baseline method and each of the prediction methods (CatBoost,
MERF, and RF) while using imputed datasets produced by KNN, LOCF, Matrix Completion, and MICE. The greater the
magnitude of t-value, the greater is the evidence against the null-hypothesis (i.e., prediction method and the Baseline method
results are same.)

KNN LOCF Matrix Completion MICE

CatBoost 2.7(0.018) 3.5(0.003∗) 5.7(0.000∗) 5.0(0.000∗)

MERF 5.0(0.000∗) 3.8(0.002∗) 6.8(0.000∗) 6.7(0.000∗)

RF 3.4(0.004∗) 1.5(0.141) 3.8(0.002∗) 5.0(0.000∗)

Fig. 9. RMSE percentage decrease while using the imputed data with different methods. [Best viewed in color.]

be explained by the substantial increase in useful observations afforded by the Matrix Completion imputation
method. Specifically, the missingness in the non-imputed dataset significantly decreased the amount of usable
data (only 13% of the data; i.e., 305 out of 2,268 observations were usable). This confirms our expectation that
applying the Matrix Completion imputation algorithm to our dataset (and thus increasing the number of useful
observations) enables our regression models to better predict the daily subjective measures from the patterns
within the passive data features.

6.3 Subjective Measure Variability & Model Performance
6.3.1 Deviations in Subjective Measures. Thus far, we have presented aggregated metrics of model performance in
predicting the seven subjective measures. However, another important consideration is the variation of predicted
values in comparison to the actual reported values. To investigate this pattern within our dataset, we plotted
MERF predicted and actual values in Figure 10. We selectively plotted results for “Social Acceptance” and “Social
Avoidance” measures in order to study the variation across measures for which the model had produced both
low and high RMSE values. Our analysis shows that the average deviation of predicted values in “Anxiety”,
“Evaluation Concern”, “Negative Affect”, “Social Acceptance”, “Social Avoidance”, “Social Effectiveness”, and
“Social Enjoyment” subjective measures from the actual value is 1.4, 1.7, 1.3, 1.1, 1.7, 1.3, 1.2 respectively.

To further understand the correlation between actual and predicted values, we computed Pearson correlation
coefficient between the actual and MERF predicted values for all subjective measures separately. The values for
“Anxiety”, “Evaluation Concern”, “Negative Affect”, “Social Acceptance”, “Social Avoidance”, “Social Effectiveness”,
and “Social Enjoyment” subjective measures were found as 0.63, 0.65, 0.61, 0.65, 0.57, 0.61, and 0.64 respectively.
All are significantly correlated with p-value < 0.01.
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(a) Social Acceptance (b) Social Avoidance

Fig. 10. Actual and MERF predicted values of subjective measures: (a) ‘Social Acceptance’, (b) ‘Social Avoidance’.

6.3.2 Individual Differences in Trait Anxiety. To understand the relationship between our model predictions
and trait social anxiety, we plotted each participant’s SIAS score, standard deviations in subjective measure,
and RMSE values (for MERF results) in Figure 11. We arranged participants in decreasing order of their SIAS
score (with lower scores indicating relatively less severe social anxiety symptoms) to interpret linear trends with
respect to SIAS. Through visualizing the relationship between trait social anxiety and model performance in this
format, we identified a number of notable patterns. First, we found that as SIAS decreases, standard deviations
decrease. That is, participants who were more socially anxious (i.e., had a higher SIAS score) produced higher
standard deviations in their subjective measure reports, whereas the subjective measures of less socially anxious
participants exhibited lower standard deviations. This suggests that highly social anxious participants report a
greater degree of variability in self-report measures across days as compared to participants with less severe
social anxiety symptoms.

Secondly, we found that the RMSE decreases as the SIAS score decreases. This suggests that predicted subjective
measures for low socially anxious participants are more accurate and reliable than those for high socially anxious
participants. This may be attributable to dynamic changes as captured by the standard deviation of daily responses
(see middle panel of the Figure).

Furthermore, Figure 11 shows that the relationship between trait anxiety and reports of social anxiety symptoms
varies across different subjective measures. For example, for the same participant, the SD values are different for
the “Social Acceptance” vs. the “Social Avoidance” subjective measures.

7 DISCUSSION

7.1 Towards Predicting Subjective Measures from Passively Collected Mobile Sensing Data
Predicting participant self-report surveys from passively collected data streams allows us to understand whether
objective physical behaviors that can be passively measured with ubiquitous mobile technology are informative
about a person’s subjective experience. Prior work has demonstrated the potential of utilizing passive data to
predict subjective measures [12, 50, 82]. In the current work, we collected seven different measures related to
social anxiety and then evaluated various machine learning algorithms for predicting each of these measures
separately to provide a more comprehensive evaluation. Our results demonstrate that, on average, the predicted
subjective reports varied by 1.3 units (on a scale from 0 to 10) from participants’ actual subjective reports (see
example in Figure 10). Further, we found that our predicted values for each measure were highly correlated with
their respective observed values (mean Pearson’s r = 6.2, all p-values < 0.01). This indicates that, despite the
minor deviations from participants’ reported experiences of social anxiety, our predictions align relatively well
with participants’ lived experience.
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Fig. 11. Grid plot showing SIAS score of participants in top row, standard deviations (SD) of daily responses in middle row,
and RMSE with MERF in bottom row. Columns correspond to ‘Social Acceptance’ and ‘Social Avoidance’ subjective measures.

We were also interested in comparing more complex, machine learning based predictive models with a baseline
averaging approach. As shown in Figure 7, the machine learning based prediction methods (i.e. RF, MERF and
CatBoost) performed better than the baseline method in predicting all of the subjective measures, with the
exception of “Social Avoidance” and “Social Effectiveness.” Since the RMSE values produced by all four predictive
modeling approaches were within 0.5 of each other across all subjective measures, it is difficult to draw definitive
conclusions from these trends. However, further investigation of the instruments used in this study and the
respective self-reporting behavior of participants could yield valuable insights into how they might be combined
or predicted in tandem to improve model performance.

In the context of training predictive models on mobile sensor data, the configuration of cross-validation (CV) is
an important factor. Prior research has presented differing insights on the affordances of random cross-validation
(e.g. 5-fold CV) as compared with leave-one-out cross validation (LOOCV) [29]. In our analysis, we pose the major
differences between the two approaches as follows: 5-fold CV ensures that the predictive model is trained on a
portion of each participant’s data whereas LOOCV renders the model completely blind to participants’ observed
behavior when making predictions. We thus evaluated our predictive modeling task using both the 5-fold CV and
LOOCV approach. We found that the average RMSE produced via the LOOCV approach for all the subjective
measures was 2.5; on the other hand, the average RMSE produced with the 5-fold CV approach was around 2 (as
shown in Figure 8). The decreased prediction error with 5-fold cross-validation approach suggests our prediction
models need to be trained with each participant’s data explicitly. In the context of our dataset, this suggests that
the relations between passive and self-report data vary from participant to participant.

7.2 Missingness in Mobile Sensing Data
Real-world mobile sensing studies will inevitably result in missing data. This unavoidable missingness should not
always limit the usability of a dataset and the ability to answer research questions posed by the study. Missing
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values are generally imputed using a statistical approach or by relying on domain knowledge. In our dataset,
domain knowledge cannot be used to impute the missing values as it is difficult to predict the participant’s
behaviors a priori. However, several data streams are collected simultaneously from the smartphone. Thus, there
is a possibility of inferring the missing values in one data stream from the remaining streams [62]. For example,
accelerometer data varies by activity type (walking, running), implying that accelerometer data could be used
to infer values in the Activity type data stream. Exploring this idea further, we investigated the efficacy of four
imputation algorithms towards alleviating the issue of missing data to predict subjective measures from passive
data streams. Our results reveal a number of important insights on the potential for data imputation to overcome
existing limitations in mobile sensing work, particularly for predicting self-reported outcomes.
First, we highlight the impact of imputing missing values in passive mobile sensor data streams on the

performance of the applied predictive models. We demonstrate that the imputation methods we evaluated in
this analysis resulted in consistent improvements in model performance across seven distinct target measures of
social anxiety. As compared to results from the non-imputed dataset, on average (across the prediction methods
and the seven subjective measure), LOCF, KNN, MICE, and Matrix Completion resulted in the reduction of RMSE
by 11%, 13%, 17%, and 20% respectively. Our results suggest that the Matrix Completion method was able to
account for the underlying relations between different features of each of the participants’ passive data. However,
similarly to the non-imputed predictive modeling results, the relatively minute differences in RMSE across the
various imputation methods indicates that further investigation is required to determine the superiority of any
given method for similar applications.
We additionally compared the performance of single-iteration imputation methods (i.e. LOCF, KNN) with

multiple-iteration methods (i.e. MICE, Matrix Completion). Our results showed that single-iteration methods
consistently underperformed multiple-iterations methods (average RMSE of 2.0 vs. 1.8). Furthermore, we found
that predictive models trained on the dataset imputed using the LOCF method consistently underperformed
models that leveraged the other imputation methods we evaluated. This is a particularly important finding given
the common use of LOCF in mobile sensing literature, particularly in the context of mental health prediction
tasks [20, 31]. For a sequence of missing values, LOCF imputes the entire sequence using the same value. Further,
it does not leverage other features within the dataset to impute the values of a feature with missing values.
Alternatively to LOCF, mobile sensing researchers have often leveraged machine learning approaches that

internally account for missing data samples in order to mitigate negative effects on predictive performance. In our
analysis, we aimed to formally compare these internal imputation methods to independent imputation methods
used prior to the prediction step. We found that although the CatBoost model internally handled of missing data,
the resulting increase in model performance was less than that achieved by other predictive modeling approaches
coupled with the Matrix Completion imputation method.

Our findings suggest that simple averaging or carrying forward of previous values is not an effective approach
in imputing values in datasets with multiple features. The application of a broader range of imputation algorithms
to future mobile sensing applications may allow us to more effectively make sense of the underlying behavioral
patterns of mental health populations in spite of the data sparsity. In particular, shifting from naive single-iteration
methods, such as LOCF, towards more robust and complexity-preserving techniques, including multiple-iteration
methods like MICE and Matrix Completion, is critical to advancing mobile sensing applications.

7.3 Implications for Understanding Social Anxiety
SAD is characterized by elevated feelings of anxiety and negativity throughout daily life, especially in the context
of social situations. For some people, the intensity of their anxious and negative feelings might be so intolerable
that they avoid social situations altogether. For others, they may enter into social situations but find those social
experiences to be unenjoyable or to lead them to worry that those they talk to are judging them negatively. For
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others still, their anxiety might be driven by thinking that other people tend to reject them socially. Or, perhaps
they feel a part of their social group, but instead have a tendency to think back on their social interactions and
criticize themselves for things they said that they think came out incorrectly (i.e., they believe themselves to be
socially ineffective). These daily aspects of social anxiety are expected to interrelate differently for each individual,
given differences in symptom presentation, making it important to sample these features separately in order to
characterize each individual’s experience of SAD. Our results show that not all of the subjective measures can
be predicted with a similar accuracy (see Figures 7 and 8). This suggests other passive features may need to be
collected to better explain the variability in the subjective measures. Such features may include sleep quality and
duration, social interaction features (pitch, energy, etc).
By leveraging EMA to collect information on multiple aspects of a person’s subjective experience of anxiety,

we investigated seven subjective measures related to perceived social effectiveness, social enjoyment, perceived
social acceptance, social avoidance, concern about evaluation, negative affect, and anxiety. Our analysis shows
that these measures of social anxiety exhibit different levels of variability, across both measures and participants
(as shown in Figure 5(b)). While these variations are in part expected due to the diversity of peoples’ lived
experiences, the question remains as to whether this variability translates to varying degrees of predictability.
In working towards clinical applications, it will be important to assess which subjective measures are most
relevant to any given person’s SAD symptom profile to target interventions appropriately. Further, some of
the subjective measures used in this analysis were found to be reliably correlated with one another (see Figure
3). By investigating the relative predictability of these interrelated instrument variables, we hope to identify
redundancies in our EMA survey design and improve future iterations of this study deployment, thus reducing
user burden.
For example, in the current data, social effectiveness and social enjoyment were highly positively correlated

with each other. This strong, positive correlation may indicate that, in a sample of individuals all high in trait social
anxiety severity, these survey items do not capture unique information. We included both items in the current
study because previous research has shown that for people with more (vs. less) severe social anxiety symptoms,
high negative affect in social interactions relates differently to social effectiveness and social enjoyment [25].
However, unlike the undergraduate sample studied by Geyer and colleagues, the current study only included
participants who were above a certain threshold of social anxiety severity. The high correlation between social
effectiveness and social enjoyment in the current study may suggest that researchers studying features of social
anxiety in daily life within an exclusively anxious sample may opt to use just one of these survey items. That
these constructs are so highly correlated in a socially anxious sample is not surprising, as an anxious person who
believes that they did not perform well in their social interactions that day is likely to have also not enjoyed
those interactions. Our results show that, for the correlated subjective measures (i.e. ‘Social Effectiveness’ and
‘Social Enjoyment’), the prediction results by different prediction methods have almost the same prediction error
(RMSE). This means that we do not need to collect/predict each of them separately given each of them can be
inferred from the other.
We additionally aimed to account for the impact of participants’ varying levels of baseline social anxiety, as

measured by a clinically-validated scale. Although we recruited only participants whose trait social anxiety score
was elevated (here, at least 29 out of 80 on the SIAS) , there was still considerable variability in trait social anxiety
across eligible participants. A participant scoring a 29 would, on average, endorse slight to moderate experiences
of the 21 symptoms measured by the SIAS, whereas a person scoring 80 would endorse universally extreme
symptoms. While both people are indeed socially anxious, the person with the higher score would likely be much
more functionally impaired than the less anxious person: the person who scored 80 might rigidly avoid nearly all
social interactions, view themselves as unwaveringly ineffective in the few social situations they do enter, and
never enjoy interacting with others. The person endorsing greater levels of trait social anxiety might experience
more consistently intense daily social anxiety, whereas the less anxious person’s experience of various aspects of
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anxiety might fluctuate more from day to day. Figure 11 shows that the prediction error for high socially-anxious
participants is more as compared to low socially-anxious participants.

7.4 Limitations and Future Work
Notably, the current study does not evaluate the relative importance of the seven different subjective measures
to individuals diagnosed with SAD. Individuals with SAD vary in their symptom presentations; it is likely that
feature importance will vary between individuals. For example, one person with SAD might experience difficulty
related to avoiding situations where they need to present at work, and another person with SAD might participate
in lots of social situations for fear of missing out on something, but experience a lot of fear that others are
judging them and not enjoy social situations. Future work should address the relative importance of each of
these measures to the experience of social anxiety in daily life in order to inform future study design and clinical
application in the personalized treatment of SAD.

Researchers often limit the number of survey items per EMA as much as possible to reduce participant burden,
given that participants are asked to answer surveys multiple times throughout the duration of the study. In the
present study, participants answered the nightly survey 35 times. As a result, we opted to keep the nightly survey
brief to reduce participant burden. Further, we elected to refrain from predicting a composite score, in favor of
predicting each single-item construct separately, because we were interested in identifying unique aspects of the
socially anxious experience rather than some global composite. We expect this level of specificity to be more
useful to clinicians who are interested in better understanding the unique ways in which the socially anxious
experience does or does not manifest itself within daily life. For instance, if a clinician sees elevated behavioral
avoidance of social situations, then the intervention is likely to focus on planned social threat exposures, while if
the elevated item centers on fears of negative evaluation, then cognitive restructuring may be more appropriate.
Thus, the items reflect different meaningful intervention targets, so while a global composite could in some ways
be useful, it might obscure meaningful within-construct variance over time.
Further, with respect to our handling of missing data, our omission of participants due to lack of compliance

with the subjective measures introduces a number of notable limitations in our results. Specifically, our results
can only be extended to moderately sparse datasets (i.e. > 50% of data available). Future work should investigate
approaches that are more suitable to extremely sparse datasets without introducing bias and extrapolating limited
observations of behavioral patterns over a longitudinal period of data collection. Furthermore, researchers should
also continue efforts towards improving engagement and compliance with EMA-based data collection.

8 CONCLUSION
The proliferation of mobile technologies have allowed researchers to collect passive data continuously in an
unobtrusive manner towards characterizing individuals’ lived experiences. However, due to the noisy nature
of real-world data collection systems, missing values often limit the completeness and thus predictive usability
of mobile sensing datasets. dataset collected to monitor persons high in social anxiety symptoms in their daily
lives. In this work, we aimed to build upon existing methodologies for predicting the subjective measures of
social anxiety from passive data streams. So, to answer the research question and to handle the data missingness.
Specifically, we evaluated the efficacy if four well-known publicly available data imputation approaches towards
mitigating the gaps in our dataset and thus improving the performance of our predictive models. After comparing
both the imputed and non-imputed versions of the same dataset for predicting seven different subjective measures
of social anxiety, our results show that leveraging sophisticated imputation methods, such as Matrix Completion,
improved our model(MERF) performance (measured by RMSE) by 22%. This suggests that data imputation is a
promising direction for dealing with missing values found in passively collected smartphone data.
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