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Abstract— Heart rate complexity (HRC) is a proven met-
ric for gaining insight into human stress and physiological
deterioration. To calculate HRC, the detection of the exact
instance of when the heart beats, the R-peak, is necessary.
Electrocardiogram (ECG) signals can often be corrupted by
environmental noise (e.g., from electromagnetic interference,
movement artifacts), which can potentially alter the HRC mea-
surement, producing erroneous inputs which feed into complex
decision models. Current literature has only investigated how
HRC is affected by noise when R-peak detection errors occur
(false positives and false negatives). However, the numerical
methods used to calculate HRC are also sensitive to the
specific location of the fiducial point of the R-peak. This raises
many questions regarding how this fiducial point is altered
by noise, the resulting impact on the measured HRC, and
how we can account for noisy HRC measures as inputs into
our decision models. This work uses Monte Carlo simulations
to systematically add white and pink noise at different per-
mutations of signal-to-noise ratios (SNRs), time segments and
HRC measurements to characteristize the influence of noise
on the HRC measure by altering the fiducial point of the R-
peak. Using the generated information from these simulations
provides improved decision processes for system design which
address key concerns such as permutation entropy being a more
precise, reliable, less biased, and more sensitive measurement
for HRC than sample and approximate entropy.

I. INTRODUCTION

The growing field of physiological telemetry systems is a
continual source of research in numerous domains such as
health care, aerospace, and nuclear power (e.g., [1], [2], [3]).
These telemetry systems are designed to provide informative
decision support and predictive analytics to gain physiolog-
ical insight on health monitoring [1] and cognitive states
identification (e.g., cognitive workload) [4], [5], [6]. One
major physiological component that is leveraged in order to
gain these insights is the sympathetic nervous system, which
is the part of the autonomic nervous system responsible for
monitoring and adapting to stress imposed on the body [7],
[8], [9]. An extended increase in arousal of the sympathetic
nervous system has been associated with a decrease in
performance [10], increased cognitive workload [11], [12],
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and deteriorating health for patients in a clinical setting [13],
[14].

One of the most relevant and informative measures as-
sociated with sympathetic response is heart rate complexity
(HRC) [13]. HRC algorithms have been developed as an inte-
gral latent physiological indicator being utilized in numerous
studies assessing cognitive workload [15], [16], [17], a pa-
tient’s physiological health and imminent risk [1], [18], [19],
and analysis of depression [20]. HRC is often operationalized
in the form of entropy measures which are calculated using
a person’s heart rate variability (HRV) [1]. These measures
require accurate, precise detection of individual heart beats.
While there are many methods to measure heart rate, such
as electrocardiograms (ECGs), photoplethysmograms, and
optical heart rate monitors, ECGs are the only method that
provides information about the QRS waveform - the so-
called combination of the three deflections typically seen in
the ECG - which corresponds to the depolarization of the
heart ventricles (a single heart beat). These QRS waveforms
are critical to precisely calculating R-R intervals and thus
HRV. HRV is then used to quantify the fluctuations in HRC.
Thus, ECG telemetry stands as the only proven method for
calculating HRC accurately. For these predictive technologies
to provide insights, computational algorithms are required to
examine variations from normal physiology [21]. Since many
of these technologies require consistent monitoring, inter-
mittent noise is inevitably introduced into the system. Thus
noisy occurrences and detection of physiological anomalies
generate ambiguities, leading to false detection, inaccurate
decision support, and alarm fatigue [22], [23], [24]. However,
much of the previous, original work surrounding HRV de-
tection was developed on cleaned, retrospective datasets [1],
[25], [26], [18]; thus, we cannot assume that complexity
algorithms perform appropriately on noisy and corrupt data.

Understanding the robustness of HRC measurements un-
der noisy conditions allows for corrective computational
approaches and system design [24]. These corrective mea-
surements are becoming a paramount objective as systems
are expected to work in real time which leads to high risk
of signal corruption. In this investigation, we aim to fill
this research gap by evaluating complexity algorithms under
noisy and corrupted conditions.

Prior Work. The majority of work on HRC was conducted
by Costa et al. [27], based on Pincus’s work with approx-
imate entropy [28]. These ideas, concepts, and applications
used to evaluate heart rate entropy spawned a multitude of
measures [26], [29]. The two most utilized complexity mea-
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sures since are approximate and sample entropy. In line with
Pincus’s and Costa’s prior work, these complexity measures
have been used on retrospective data to demonstrate predic-
tive model feasibility and practicality in classifying patients
in clinical settings [27]. While extensive studies have been
conducted on various HRC methods and applications in the
past few decades, few studies exist that evaluate the influence
of noise and erroneous behavior on these measures. These
works have demonstrated that missed detection of QRS
complexes (heart beats) could drastically alter downstream
entropy measurements [30], [24]. This was demonstrated by
examining the effects of corruption through the false positive
(FP) and false negative (FN) rates of the detection algorithms
rather than looking at how the SNR itself alters entropy [30],
[24]. This was done to control for the false positive and
false negatives in the detection algorithms. These approaches
manipulate the HRV signal through the concatenation of
sequences or random down and up sampling, which changes
the entropy measurement associated with the HRC [30], [24].
Although robust and accurate QRS complex detection algo-
rithms are highly desirable and have been achieved through
various types of machine learning approaches [18], QRS
detection is not the only avenue through which erroneous
entropy measurement can occur. ECG sampling frequency
and R-peak interpolation have demonstrated importance as
methodological considerations in obtaining consistent HRV
signals [31]. These concerns underline the importance of
the fiducial marker for the R-peak and its relationship to
producing reliable HRV measurements, thus impacting the
HRC. This can be depicted in Figure 1, an illustration where
the ECG signal R-peak has an arbitrary confidence interval
which therefore induces uncertainty in the HRV signal below.
Noise plays an integral role in where the fiducial marker for
the R-peak is placed, which affects downstream applications.
However, neither the extent to which noise alters HRV and
HRC measurement through changes in the fiducial marker
nor the downstream implications of these fiducial markers
on statistical models have been characterized. Ultimately,
current literature’s focus has been on the advancement of
complexity algorithms and their utility for classification,
rather than understanding how and when these algorithms
fail. Developing this understanding is critical for appropriate
system design in preventing alarm fatigue, erroneous predic-
tion, and decision support systems [24], [22].

This work raises six relevant research questions (RQs):
1) How does the SNR and the color of the noise alter the
fiducial marker of the R-peak? 2) Is any particular entropy
measurement more precise under corruption than others? 3)
Does signal length contribute to a more robust measurement
in the presence of corruption? 4) Can a precise entropy
measurement still be statistically sensitive in differing HRC
dynamics expected in study populations? 5) If the fiducial
point is altered by noise, how does this effect the direction
of the measured entropy calculation? 6) How much impact
does noise and the fiducial marker downstream have on the
statistical implications of a study?
Challenges. Due to the multiple stages involved in the

process of calculating HRC, it is difficult to pinpoint exactly
where noise alters an entropy measure’s reliability. Noise
can alter HRC reliability through numerous avenues such as
False Positives for the QRS detection, false negatives of the
QRS detection, or the QRS waveform fiducial point shifting.
However, the robustness of current methods has only been
evaluated by resampling HRV signals, thus only examining
the false positive and false negative rate [30], [32], [33].
Therefore, the fundamental issue of how corruption in an
ECG signal alters the HRV signal through slight shifts in
fiducial points and QRS waveform timing has been neglected
and is difficult to capture. Additionally, the numerous types
of complexity measures produce different outputs with dif-
ferent scales, further complicating the validation process and
comparative analysis.
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Fig. 1. This illustration demonstrates the variation in the identified location
of R-wave peaks results in uncertainty in the heart rate variability (HRV).
Variation in the identified location of the R-peak from the QRS complex
results in uncertainty in the heart rate variability (HRV) signal.

Insight. A systematic process of validation in which noise
can be exactly replicated through the seeding of a random
number generator and introduced to a signal provides
control and reproducibility when applied to testing datasets.
Monte Carlo simulations allow for an increased number of
controlled iterations enabling the evaluation of the aleatory
uncertainty from a set of selected parameters (e.g, SNR,
type of entropy measurement) to form distributions that
characterize errors caused by the fiducial R-peak. This
controlled simulation enables rigorous analysis on how the
fiducial points impose errors in the system. Here we strictly
analyze shifts in the mean and variance associated with
the fiducial point at which noise enters the system. Using
these approaches, we can overcome scaling differences
from different entropy measures by evaluating the percent
error (PE) in the various reported entropy distributions with
respect to that found without the introduced noise.

Contributions. We designed and implemented a Monte
Carlo simulation to evaluate the effects of time window
size and SNR level of ECG signals on the percent error
of three entropy calculation methods applied to those ECG
signals. This method provided a controlled framework for
evaluating the effects of ECG corruption on the reliability



of three entropy measures.
The contributions of this work are as follows:
1) We characterize how SNR alters the locations of the

fiducial point of the R-peak via a probability mass
function (PMF), and demonstrate that the fiducial point
for R-peak is most affected by white noise at varying
SNR levels, as compared to pink noise.

2) We demonstrate that permutation entropy is more pre-
cise than both approximate and sample entropy (i.e., it
has the lowest standard deviation).

3) We demonstrate that, regardless of the entropy mea-
surement or type of noise, as the time window seg-
ment increases, the precision of the measured entropy
improves.

4) We demonstrate that increased precision does not im-
ply a lack of sensitivity for demonstrating significant
differences in HRC.

5) We demonstrate that as the SNR increases (altering
the fiducial marker), there is a directional change in
the measured entropy.

6) We show the level of SNR that affects the likelihood
of making a distinguishable distribution statistically
indistinguishable.

All of these findings ultimately aid us in future design
methodologies to reduce predictive modeling error down-
stream from upstream feature extraction methodologies.

II. METHODS

The methods section is split into two sections. The first
method section addresses research questions RQ1 to RQ3
and the second section addresses RQ4 to RQ6.

A. Monte Carlo Simulation: Addressing RQ1 to RQ3

This section outlines the Monte Carlo simulation imple-
mentation method shown in Figure 2. These simulations were
designed to study the effects of time window segmentation
length and signal corruption resulting from multiple “colors”
of noise on the prevalence of fiducial marker shifts on
approximate, permutation, and sample entropy calculations.

1) Normal Sinus Rhythm Data: Single lead ECG data
from 10 subjects (130 min, 128 Hz) selected from the MIT-
BIH Normal Sinus Rhythm Database on PhysioNet [25] were
utilized. The Normal Sinus Rhythm database was selected
to reduce measurement variability that could be attributed to
physiological dysfunction such as atrial fibrillation, ectopy,
and other disorders [27]. Each subject’s ECG signal was
divided into 65, 26 and 13 intervals for 2, 5, and 10 minute
time windows, respectively. Following signal preprocessing,
noise was added, and the prevalence of shifts in the fiducial
marker (i.e., the location of the R-peak) was collected to
form a PMF.

2) Signal Preprocessing: After segmenting the ECG sig-
nals into intervals, a high pass and low pass finite impulse
response Butterworth zero phase filter was applied to each
time window. This produced our cleaned ECG signal, XS. The
zero phase filter avoids distortion in the phase of signal [34].
A key component for also avoiding fiducial marker shifting.

3) Simulation A: Determine Effect of Noise on Prevalence
of Fiducial Shifts: The following section describes the proce-
dure for creating a PMF of the prevalence of fiducial marker
shifts caused by the addition of either white or pink noise to
ECG signals.

a) Step 1: Add Noise: In Step 1, a white or pink noise
signal, XN , was added to the cleaned signal XS comprising
signal-to-noise ratios (SNRs) from 2 to 20 in increments of
2. The SNR level XN added to XS is defined as

SNR = 10log10

√√√√ ∑(XS · X̄S)
2

∑(XN · X̄N)
2 , (1)

where X̄N and X̄S are the complex conjugates of XN and
XS. A randomly seeded XN of each SNR was added to each
subject’s cleaned ECG signal interval 100, 250, or 500 times
for each 2, 5, and 10 minute interval, respectively.

White Noise: White noise is designed into the imple-
mentation of the Monte Carlo Simulation to evaluate the
effects of electromagnetic interference, problematic sensors,
or issues with wireless devices [35], [36]. A uniform dis-
tribution was used to model white noise in the frequency
domain by sampling from a random Gaussian distribution in
the time domain sequence. The SNR is altered by adjusting
the variance of the Gaussian distribution.

Pink Noise: Pink noise was selected to evaluate the
effect of correlated noise typically associated with observa-
tion noise on the ECG [37]. Pink noise was modeled as
a decreasing function (1/ f ) in the frequency domain and
has close similarity to brownian motion-like noise which is
modeled as a decreasing function (1/ f 2) and is related to
electrode movement noise [37]. Pink noise was implemented
using a noise generator package on MATLAB’s file exchange
service based on the theory for discrete simulations of
colored noise by Kasdin [38].

b) Steps 2 and 3: Identify Fiducial Shifts and Construct
Fiducial Shift PMFs: In Step 2, a QRS complex detection
algorithm was applied to both the cleaned and noisy data to
identify individual heart beats, R-R intervals, and heart rate
variability (HRV) [39]. Using the Pan-Thompkins algorithm,
the fiduical mark’s location for the R-peak is determined
from the rising edge of the waveform [39]. The locations of
each R-peak extracted from the noisy signal were compared
to the locations of the R-peaks extracted from the filtered
signal. In Step 3, the prevalence of noisy R-peaks within
±39.1 ms of their filtered counterparts were collected to
form a PMF. This particular time increment was due to
our sampling frequency of 128 Hz, thus F−1

s = 128−1 =
39.1 ms. False positives (i.e., noisy R-peaks detected outside
of this window) and false negatives were not included in the
construction of these PMFs. This process of creating PMFs
was repeated for all subjects’ time intervals (2, 5, 10 mins),
resulting in PMFs for each noise type (white or pink), and
for each SNR level (2,4,. . . ,20) equaling a total of 60 PMFs
(i.e., 3 Time Intervals x 10 SNR Levels x 2 Types of Noise).

4) RQ1: Effects of Noise Level and Type on Fiducial
Shift PMFs: We used visual inspection of PMFs and the
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corresponding tabulated shift frequency values to evaluate the
effects of different SNRs and noise types on the prevalence
of fiducial marker shifts.

5) Simulation B: Determine Effect of Fiducial Shift Preva-
lence on Heart Rate Complexity: The following section
discusses the process of determining the effects on entropy
measures resulting from perturbing the location of R-peaks
extracted from filtered (cleaned) signals by an amount sam-
pled from the PMFs constructed during Simulation A.

a) Step 1: Sample Fiducial Shift PMF: In Step 1,
the location of R-peaks of subjects’ filtered ECG signal
intervals were perturbed with a probability determined from
the fiducial shift PMFs constructed in Simulation A. A HRV
signal was then computed for both the filtered and perturbed
signals.

b) Step 2: Compute Entropy and Percent Error: In Step
2, three entropy measures were applied to each of the HRV
signals–approximate entropy [28], permutation entropy [40],
[29], and sample entropy [26].

Approximate entropy: is defined as

ApEn(m,r,N) = Φ
m(r)−Φ

m+1(r), (2)

where Φm(r) = (N−m+ 1)−1
∑

N−m+1
i=1 logCm

i (r). Cm
i (r) is

the number of matches to template i of length m within a
tolerance of r (including self matches) [28].

Sample Entropy: is defined as

SampEn(m,r,N) =− ln
[

Am(r)
Bm(r)

]
(3)

where Am(r) and Bm(r) are the probabilities of two se-
quences matching for m+ 1 and m data points respectively
within a tolerance of r (excluding self matches) [26].

Permutation Entropy: employs rank order (i.e., not
exact distance) to quantify time series similarity. This is
defined as

Hn =−
n!

∑
j=1

p′j log2 p′j (4)

where p′j is the proportion of the occurrence of th jth
template (of length m) in the signal [40], [29]. Approxi-
mate [28] and sample entropy [26] both use distance as
the measurement to examine similarity in time series to
quantify entropy. The main difference between the two is that
unlike approximate entropy, sample entropy excludes self
matches. On the other hand, permutation entropy employs
rank order (i.e., not exact distance) to quantify time series
similarity [40], [29]. In Step 2, approximate, permutation,
and sample entropy values were computed for both the
filtered and perturbed HRV signals and compared to calculate
percent error 100, 250, or 500 times for each 2, 5, or
10 minute interval, respectively; each noise type (white or
pink); and each SNR level (2,4,. . . ,20).

6) RQ2: Comparison of Entropy Method Reliability: We
computed the standard deviation of each time interval and
then applied the natural logarithm to the data to obtain
relatively equal variances and reasonably symmetric dis-
tributions. We then tested for the differences in the mean
log standard deviation of the percent error using a one-way
ANOVA.

7) RQ3: Effects of Window Size on Reliability: Using the
data from Simulation B, conditional distributions were con-
structed of the percent error in entropy for time window sizes
of 2, 5, and 10 minutes and for both pink and white noise
by collapsing over SNR, subject, and time interval number.
Using visual comparison and descriptive statistics, the effects
of window size on entropy reliability were addressed for both
white and pink noise.

B. Sympathetic Response Dataset: Addressing RQ4 to RQ6

The experience of hypoxia is known to result in
autonomic-nervous-system-driven changes (sympathetic
arousal) in the cardiac and respiratory systems [41]. We
utilize a dataset which characterizes hypoxic responses
because of these known physiological changes in



sympathetic arousal to address research questions RQ4
to RQ6.

1) NASA Hypoxia Data: The dataset was collected by a
research team at NASA Langley Research Center (LaRC)
who subjected 49 volunteers (all with current hypoxia train-
ing certificates) to normobaric hypoxia to study the impact
on aircraft pilot performance [42], [43].

The goal of the study was to understand cognitive impair-
ment due to exposure to mild hypoxia in order to improve the
safety of psychophysiologically-based automation interfaces.
Subjects in the study experienced simulated altitudes of Sea
Level (21% O2) and 15,000 feet (11.2% O2) induced by an
Environics, Inc. Reduced Oxygen Breathing Device (ROBD-
2). During non-hypoxic and hypoxic exposures each subject
performed a battery of written, computer-based, and flight
simulation tasks each lasting 10 minutes. In each exposure,
the research team collected task performance measures, a
subjective self-report of workload (NASA Task Load Index),
and multiple physiological responses (including ECG). This
article discusses only the ECG data collected during hypoxic
and non-hypoxic exposures.

2) RQ4: Evaluating Entropy Method Sensitivity: To eval-
uate the sensitivity of entropy measures in detecting mild
hypoxia, approximate, permutation, and sample entropy were
calculated for ECG data collected during the final 2 min
and final 5 min of non-hypoxic and hypoxic exposures.
Ten minute time segments were excluded from this analysis
because hypoxic exposures were only ten minutes long and
thus not all subjects demonstrated indicators of mild hypoxia
(e.g., Sp02 < 80%) until several minutes into the 15,000 ft
exposures. Due to small sample size and non-normality, the
non-parametric Wilcoxon rank-sum test was employed to
test for differences between the hypoxic and non-hypoxic
cohorts with smaller p-values indicating a greater ability
for an entropy calculation method to discriminate between
hypoxic and non-hypoxic states. The initialized parameters
used in calculating the entropy measurements were the same
as in Simulation B (m = 2 & r = 0.15σ for sample and
approximate entropy and m = 3 for permutation entropy
order).

3) Simulation C: Effect of Fiducial Shifts on Entropy Data
from Hypoxic Subjects: Using the NASA hypoxia ECG
dataset and the PMFs of the fiducial marker shifting found
in Simulation A, we corrupt the HRV signals by altering the
locations of the R-peaks for 2 and 5 minute time segments
at various SNR levels. Each subject and their respective
cohort’s (hypoxia and non-hypoxia) fiducial markers are
corrupted 250 times to examine the raw change in the entropy
distribution.

4) RQ5: Effects of Fiducial Shifts on Entropy Skew and
Bias in Hypoxic Subjects: We pooled the approximate, per-
mutation, and sample entropy values for all subjects’ Monte
Carlo trials for both hypoxic and non-hypoxic exposures at
each SNR level and time window size (2 and 5 min). Kernel
density plots of each pooled distribution were obtained and
visually inspected for skewness. For each conditional pooled
distribution, the mean entropy value was computed and

TABLE I
PINK NOISE MONTE CARLO SIMULATION SUMMARY OF PROBABILITY

DISTRIBUTION OF THE FIDUCIAL SHIFT (TRIALS=∼ 65,000).

Target Distribution of Fiducial Shift by Milliseconds
SNR -15.62ms -7.81ms 0ms 7.81ms 15.62ms

2 0.0 4.63 90.39 4.95 0.0
4 0.0 3.68 92.41 3.89 0.0
6 0.0 2.94 93.97 3.07 0.0
8 0.0 2.33 95.22 2.42 0.0

10 0.0 1.85 96.21 1.92 0.0
12 0.0 1.47 96.99 1.53 0.0
14 0.0 1.18 97.60 1.21 0.0
16 0.0 0.94 98.10 0.96 0.0
18 0.0 0.75 98.48 0.76 0.0
20 0.0 0.60 98.79 0.60 0.0

qualitatively assessed for general trends in the data.
5) RQ6: Effects of Fiducial Shifting on Cohort

Discriminability: We demonstrate this through an approach
similar to that of RQ3. Using the NASA hypoxia dataset
and the probability distributions associated with the fiducial
shifts, we alter the fiducial markers of the R-peaks in
the ECG signals to simulate corruption for each subject.
This process is simulated 250 times for each time window
segment length, cohort, and entropy measurement at each
SNR level.

During each simulation trial the non-parametric Wilcoxon
rank-sum test evaluated differences between the hypoxic and
non-hypoxic distributions with the null-hypothesis signifi-
cance level set at 0.05. After all simulation trials were com-
plete, the percentage of tests rejecting the null-hypothesis
(i.e., having p < 0.05) were collected. A greater percentage
of null-hypothesis rejections indicates a greater ability to
resolve hypoxic from non-hypoxic states.

III. EVALUATION AND DISCUSSION

In this section, we address the following research questions
regarding the effects of ECG corruption on entropy dynamics
which were introduced in Section I:

RQ1 How does SNR and various colored noise effect the
fiducial point of the R-peak?

RQ2 If the fiducial point of the R-peak shifts, does a
single entropy method demonstrate superior pre-
cision from the proposed three types of entropy
calculations that measure HRC?

RQ3 Does increasing the HRV signal time segment
length enhance HRC variance (entropy dynamics)?

RQ4 Is increased precision associated to lack of sensi-
tivity for demonstrating significant differences in
HRC?

RQ5 Is there a directional change in the measured en-
tropy from corruption in which the entropy in-
creases, decreases, or does only the variance sym-
metrically increase providing no actual change in
complexity?

RQ6 At what simulated SNR level do fiducial shifts
render two previously distinguishable distributions
indistinguishable?



TABLE II
WHITE NOISE MONTE CARLO SIMULATION SUMMARY OF

PROBABILITY DISTRIBUTION OF THE FIDUCIAL SHIFT

(TRIALS=∼ 65,000).

Target Distribution of Fiducial Shift by Milliseconds
SNR -15.62ms -7.81ms 0ms 7.81ms 15.62ms

2 0.01 9.74 78.9 11.21 0.10
4 0.0 8.02 82.90 9.02 0.04
6 0.0 6.52 86.29 7.16 0.01
8 0.0 5.23 89.13 5.62 0.0

10 0.0 4.20 91.35 4.44 0.0
12 0.0 3.33 93.15 3.49 0.0
14 0.0 2.65 94.57 2.79 0.0
16 0.0 2.10 95.71 2.17 0.0
18 0.0 1.66 96.60 1.73 0.0
20 0.0 1.37 97.21 1.41 0.0

TABLE III
PINK NOISE ENTROPY PERCENT CHANGE DISTRIBUTION:

(TRIALS=∼ 65,000).

Time Target Approximate
Entropy

Permutation
Entropy

Sample
Entropy

Window SNR µ σ µ σ µ σ

2 2 0.34 5.90 1.83 1.38 7.68 9.23
2 6 0.27 5.14 1.50 1.23 5.89 9.10
2 10 0.34 3.95 1.05 1.01 4.02 6.25
2 14 0.20 3.12 0.68 0.84 2.48 4.96
2 18 0.04 2.45 0.47 0.68 1.65 4.31

5 2 1.52 4.39 1.65 0.93 5.50 7.85
5 6 1.18 3.89 1.35 0.81 4.25 7.16
5 10 0.82 2.82 0.93 0.64 2.97 4.98
5 14 0.53 1.98 0.62 0.50 1.95 3.32
5 18 0.36 1.49 0.42 0.39 1.28 2.50

10 2 4.78 3.22 1.61 0.59 6.99 2.50
10 6 3.77 2.63 1.32 0.52 5.45 2.09
10 10 2.50 1.88 0.90 0.40 3.55 1.66
10 14 1.64 1.33 0.60 0.32 2.31 1.29
10 18 1.09 1.04 0.40 0.26 1.50 1.05

A. RQ1 — Fiducial R-peak Marker, Type of Noise, and SNR

We hypothesized that the fiducial marker will change as a
function of the SNR and type of noise. Each row in Tables I
and II present a PMF of the fiducial marker shifting for white
and pink noise, respectively, as a function of the targeted
SNR. The PMF was generated by part A of the simulation
discussed in Figure 2 and describes the probability of the
fiducial marker shifting. Each shifting in the fiducial marker
is a single discretized point or index in the time series
equivalent to F−1

s . Since the sampling rate of the discretized
signal is 128Hz, the index shifts in increments of 7.81ms.
Both of these tables demonstrate that as the SNR increases,
there is a greater probability of altering the fiducial marker.
As a function of the type of noise applied to the signal, white
noise is the most corruptive in altering the fiducial marker.

B. RQ2 — Type of Entropy and Precision

Due to the fiducial point of the R-peak shifting, we address
how precision (i.e., standard deviation, σ ) can alter the
proposed three types of entropy calculations that measure
HRC. Tables III and IV are generated from Part B of the
Simulation discussed in Figure 2 that develops distributions
based on the percent change for their respective entropy
measurement, SNR, Time Segment, and type of noise. To

TABLE IV
WHITE NOISE ENTROPY PERCENT CHANGE DISTRIBUTION:

(TRIALS=∼ 65,000).

Time Target Approximate
Entropy

Permutation
Entropy

Sample
Entropy

Window SNR µ σ µ σ µ σ

2 2 -0.34 11.21 3.45 2.07 18.84 14.63
2 6 0.21 8.35 2.75 1.74 12.92 11.75
2 10 0.40 6.29 1.98 1.46 8.65 9.84
2 14 0.32 4.78 1.39 1.19 5.71 7.84
2 18 0.26 3.77 0.94 0.98 3.63 6.64

5 2 3.31 8.26 3.21 1.65 14.24 13.38
5 6 2.46 6.41 2.57 1.32 9.50 11.54
5 10 1.72 4.96 1.88 1.04 6.42 9.03
5 14 1.15 3.73 1.33 0.80 4.24 6.78
5 18 0.85 2.52 0.89 0.62 2.97 4.20

10 2 12.7 8.07 3.23 1.09 19.20 5.24
10 6 8.54 5.58 2.59 0.86 13.10 3.87
10 10 5.75 3.80 1.89 0.66 8.50 2.82
10 14 3.80 2.69 1.32 0.51 5.49 2.18
10 18 2.48 1.90 0.90 0.40 3.54 1.66

address RQ2 we can first visually compare the standard
deviations of Tables III and IV where for each row in
the table, all the variables (e.g., SNR, Time Segments) are
held constant except for the type of entropy measurement
(e.g., sample entropy). We demonstrate that the standard
deviation of the permutation entropy is respectively lower
than either approximate or sample entropy across all SNR
levels, time segments, and type of noise. Thus from the
Monte Carlo simulation, we demonstrated that permutation
entropy provides a more precise HRC measurement than
either approximate or sample entropy. This finding is likely
due to the manner in which permutation entropy is calculated
versus sample and approximate entropy. Permutation entropy
analyzes HRV by rank order of the R-R interval timing rather
than their distance criteria like sample and approximate
entropy. Outside of false positives and missed detections of
the QRS wave, corruption of the fiducial shift and the timing
of QRS wave indices has a stronger effect on distance than
on the rank order.

For both white and pink noise, the one-way ANOVA indi-
cated that there were significant differences in the mean log
standard deviation of the percent error of the three entropy
measures (F(2,31575) = 12440, p< 0.05 and F(2,30957) =
11156, p < 0.05 for white and pink noise respectively).
Post-hoc comparisons using the Tukey-Kramer procedure
revealed that all entropy methods produced significantly
different mean log standard deviations of the percent error
(p < 0.05) for both white and pink noise with permutation
entropy having the lowest mean log standard deviation of
the percent error followed by approximate entropy and then
sample entropy.

C. RQ3 — Noisy Time Segments and HRC Variance

Increased time segments provide more data which should
aid in reducing the aleatory uncertainty for entropy measure-
ments. Therefore we hypothesize that increased time segment
lengths at a fixed SNR value would result in more stable and
precise HRC measurements. Through the proposed Monte
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Fig. 3. Percent Change Entropy Distribution (SNR=2db, White Noise)

Carlo Simulation (Part B) in Figure 2, the SNR values were
kept fixed but the time windows varied by 2, 5 and 10
minutes for pink and white noise. By examining Tables III
and IV at their respective SNR levels, we note that the
standard deviation and expectation decreases as the window
size increases for both white and pink noise.

Based on the Monte Carlo simulated samples, a pictorial
representation of the distribution was created using kernel
density estimation for white noise SNR levels of 2 and 20
at 2 and 10 minute segments shown in Figures 3 and 4.
Figure 3 visually demonstrated Sample Entropy extending
beyond a 30% change from its original entropy calculation.
However, as the time segment increases we can note the mass
of the distribution becomes more centralized, thus increasing
the precision of the entropy measurement. This effect of
increasing the windowing segment length is consistent for
all three entropy calculation methods. In regards to real-
time health monitoring, we are met with a trade-off between
time resolution and the precision of the entropy measure-
ment. For example, as we aim to characterize a subject’s
physiology within a smaller time frame, the precision of the
measurement worsens. Thus, when designing these systems,
one should consider the level of imprecision which can exist
before unacceptable Type 1 or Type 2 errors are encountered
in the system.

D. RQ4 — Insight HRC Sensitivity

Although some HRC measurements may not offer ideal
precision or stability (e.g., Sample and Approximate En-
tropy), we hypothesize that this lack of precision allows
for higher sensitivity in distinguishing features between two
cohorts. That is, the increased variation in the measurement
that results in a decrease in precision provides information
that can aid in demonstrating independence between two
classes or distributions.

Table V provides the p-value for the Wilcoxon Rank Sum
Test for the three proposed entropy measurements at 2 and
5 minutes, which evaluates the hypoxic and non-hypoxic
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Fig. 4. Percent Change Entropy Distribution (SNR=20db, White Noise)

cohorts of the presented NASA experiment. In Table V,
we note that permutation entropy had a lower P-Valve for
both sets and for all time segments than approximate and
sample entropy, demonstrating independence between two
classes or distributions. Based on the results and discussion
of RQ3, permutation entropy was also shown to be the
most precise measurement from the other proposed entropy
measurements. Thus, the results of this data do not fully
support our hypothesis that these imprecise measurements
are more sensitive to noise but are better at distinguishing
independence. Hence, there is no trade-off between increased
precision and the ability to distinguish the two distributions
of hypoxia and non-hypoxia, a known cause of autonomic
nerve system activation which alters HRC dynamics.

TABLE V
SIGNIFICANCE LEVEL (P-VALUE) OF WILCOXON RANK SUM TEST

BETWEEN HYPOXIC AND NON-HYPOXIC COHORTS

Time PermEntO ApproxEnt SampEnt

2 mins p = 0.022 p = 0.55 p = 0.099
5 mins p = 0.032 p = 0.067 p = 0.034

E. RQ5 — What is the Directional Change in Entropy

As noise alters the fiducial point, we aim to understand
how this affects the direction of the entropy measurements.
For example as noise increases and alters the fiducial point,
does the measured entropy increase, decrease, or is there
no clear trend apparent (symmetric)? We hypothesized that
increased perturbations of the fiducial point from increased
noise would make the HRV signal less predictive, thus
increasing the entropy measured in the signal. There is some
support of this hypothesis from the results provided in RQ2
and RQ3, where you can note a general positive shift in the
reported expectation (µ) of the calculated percent change.
This is also demonstrated by Figures 3 and 4, where the
percent change of the distributions are skewed further to the
right as SNR increases.



TABLE VI
WHITE NOISE ENTROPY MOVEMENT (TRIALS=∼ 250).

Time Target Approximate
Entropy

Permutation
Entropy

Sample
Entropy

Window SNR Hµ NHµ Hµ NHµ Hµ NHµ

2 2 0.679 0.691 0.888 0.909 1.345 1.483
2 6 0.672 0.688 0.883 0.906 1.332 1.470
2 10 0.669 0.687 0.880 0.903 1.319 1.465
2 14 0.667 0.686 0.878 0.902 1.310 1.462
2 18 0.665 0.685 0.876 0.901 1.307 1.459

5 2 0.911 0.975 0.897 0.914 1.227 1.407
5 6 0.903 0.970 0.892 0.911 1.206 1.393
5 10 0.895 0.967 0.888 0.909 1.191 1.384
5 14 0.892 0.964 0.886 0.908 1.182 1.384
5 18 0.888 0.962 0.884 0.907 1.177 1.377

However, in order to properly support our hypothesis RQ5,
provides the raw calculated values which were averaged over
subjects and trials. More specifically, Table VI provides the
mean value of these distributions specifically associated to
either the Hypoxic (Hµ ) or Non-Hypoxic (NHµ ) case across
SNR levels and time windows. We can note a consistent
linearly increasing mean entropy as noise increases from
the initial uncorrupted dataset for all time segments and
entropy measurements. This finding is critical since healthier
individuals (an individual with a lower sympathetic response)
have higher entropy measurement producing more complex
heart patterns and higher variability. Hence this informs us
that if corruption occurs and the fiducial point is altered,
subjects will appear healthier than they actually are.

F. RQ6 — Indistinguishable Independent Distributions

We demonstrated in RQ5 that there is a clear directional
change in the measured entropy when noise is introduced
into the signal. Because the noise does not alter the mea-
sured entropy distribution symmetrically (e.g., Figure 3) and
thus shifts the entire distribution in one direction, we must
then inquire about the implications of how this statistically
affects our readings and to what degree it affects statistical
independence. For example, if a subject has a lower entropy
measurement, we perceive them to have a higher amount
of physiological stress (i.e., increase sympathetic response).
However if noise is introduced into the signal, causing an
increase in entropy, what is the likelihood that the subject
would statistically be viewed as someone not under stress?

Since hypoxia is known to cause an increase in sympa-
thetic response, we address this research question through
an approach similar to that of RQ4 using the NASA hypoxia
dataset. We hypothesized that as SNR increases, it becomes
increasingly difficult to discriminate (α = 0.05) between the
two cohorts of hypoxia and non-hypoxia HRC measure-
ments. The simulation is iterated 250 times for each window
time segment, cohort, type of entropy measurement, and SNR
for their respective cohorts, hypoxia and non-hypoxia. In
Table VII, (Sigµ ) denotes the simulations where noise was
only added to the hypoxia cohort data. However, (dSigµ )
denotes the simulations where noise was added to both the
hypoxia and non-hypoxia data. The percentage of statistical
tests that were significant from the 250 simulations are shown

TABLE VII
EVALUATING THE UNCERTAINTY IN INDISTINGUISHABLE

INDEPENDENT: (TRIALS=∼ 250).

Time Target Approximate
Entropy

Permutation
Entropy

Sample
Entropy

Window SNR Sigµ dSigµ Sigµ dSigµ Sigµ dSigµ

2 2 0% 0% 0% 70.0% 0% 0.4%
2 6 0% 0% 0.4% 83.2% 0% 0.8%
2 10 0% 0% 5.2% 88.8% 0% 0.2%
2 14 0% 0% 33.6% 92.4% 0% 1.2%
2 18 0% 0% 72.0% 96.4% 0% 0.4%

5 2 0% 0% 0% 24.4% 0% 18.0%
5 6 0% 0% 0% 47.2% 0% 51.6%
5 10 0% 0% 0% 69.6% 1.2% 88.4%
5 14 0% 0.8% 1.2% 78.4% 26.8% 96.4%
5 18 0% 0% 20% 85.2% 79.2% 99.6%

in each column of Table VII. This percentage is intended to
provide contextual meaning of the likelihood that the two
cohorts are statistically independent as a function of SNR,
windowed time segment and type of entropy measurement.
From Table VII can observe that there is a much smaller
percentage of statistical independence when noise is only
introduced to the hypoxia cohort. We already know from
Table V, when no noise is introduced, that Permutation
Entropy for a 2 minute time segment is significant, (p =
0.022). However for the Sigµ case of corrupting only the
hypoxic cohort with an SNR of 10, we expect the two
classes to be independent only 5.2%. This means that based
on the 250 simulations that we ran, only 13 of the 250
generated a p-value less than 0.05. Similarly for the dSigµ

case when both the hypoxic and non-hypoxic cohorts are
corrupted, 222 out of the 250 simulations generated a p-
value less than 0.05. Thus, we expect to achieve significance
88.8% of the time when both signals are corrupted. This
discrepancy between the Sigµ and dSigµ cases is due to the
impact on how the noise shifts the means of the distributions.
Hypoxia readings have a lower entropy measurement since
the subject is under stress. However if noise is present
strictly for the hypoxia data, it biases the distribution into
making the collected data look as if the subject is not
under stress and thus non-hypoxic. Therefore, it becomes
more difficult to statistically distinguish between the two
cohorts. Machine learning approaches specifically designed
to detect anomalies in the data, such as single class Support
Vector Machines (SVMs) [44], [45], are designed to learn
the decision boundaries strictly on a single class. Thus as
incoming data is altered by noise and the distribution is being
shifted outside classifier boundary, the algorithm will classify
it as an anomaly causing a false positive. This finding is
paramount if we know that hypoxia HRV signals are being
corrupted, and can be combated by introducing noise into the
control cohort (i.e., non-hypoxia) to appropriately adjust the
results of our statistical inference (re-train our ML algorithm
for more generalized classifier boundaries to incorporate
various noise levels) or simply bias the distribution based
on your incoming SNR.



IV. CONCLUSION

Current literature about handling HRC calculations fo-
cuses on reducing the false positive and false negative rates of
detecting the QRS waveform in the ECG signal. The location
of the R-peak is typically extrapolated from the detected QRS
waveform and little attention is given to how errors regarding
the location of the R-peak can alter HRC readings. In this
paper we present a Monte Carlo simulation framework that
evaluates the effects of ECG signal corruption on the fiducial
point of the R-peak and how it effects HRC measurements
when using sample, approximate, and permutation entropy.

Through the use of Monte Carlo simulations, we are able
to characterize PMF distributions and how the fiducial point
shifts based on signal quality of the ECG. White noise was
shown to cause higher perturbations in the fiducial point of
the R-peak when compared to pink noise. This characteriza-
tion allowed us to run additional Monte Carlo trials in order
to evaluate changes in the precision of the proposed entropy
measurement, in which permutation entropy is demonstrated
to be most precise during corruption. From these findings,
we utilized a secondary data set that addresses the sensitivity
of demonstrating a statistical difference between hypoxia
vs non-hypoxia caused by altered heart rate dynamics from
the autonomic nervous system. This analysis showed that
permutation entropy not only had better precision under
noisy environments but was also sensitive statistically for
2 and 5 minute time segments between the two cohorts.
Where as, Approximate entropy was not significant for either
5 or 10 minutes and sample entropy was only significant
for 5 minute time segments. This work then demonstrated
that as perturbations of the R-peak increased, as a function
decreasing SNR, the entropy of the signal increased. We
demonstrated that corrupted ECG signals entropy calcula-
tions have the potential to have biased means. However,
permutation entropy showed to have a stronger precision and
sensitivity which was able to still out perform sample and
approximate entropy. Thus, sample and approximate entropy
have a greater likelihood of showing inaccurate statistical
changes in heart dynamics during hypoxia for 2 minute
segments.

HRC calculations are critical to the implementation of
statistical modeling techniques in numerous bio-informatics
domains for physiological insight. Thus we were able to
address critical fundamental design questions, allowing re-
searchers to evaluate what type of entropy measurements are
best, suggestions on how to handle ECG signal corruption of
the fiducial point, and ideal time window segments base on
the type of environment imposed on their telemetry system.
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